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Thermal rate constankgT) and cumulative reaction probabiliti®gE) can be computed as a sum of correlation
functionsCnm = [n|f(H)|pmld In this paper we discuss the use of two different Krylov subspace methods to
compute these correlation functions for large systems. The first approach is based on the Lanczos algorithm
to transform the Hamiltonian to tridiagonal form. As shown by MandelshtanChem. Phys1998 108

9999) and Chen and Gud.(Chem. Phys1999 111, 9944), all correlation functions can be computed from

a single recursion. The second approach treats a number of linear systems of equations using a Krylov subspace
solver. Here the quasiminimal residual (QMR) method was used. For the first approach, we found that we
needed the same number of Lanczos recursions as the size of the matrix. If no re-orthogonalization is used,
the number of recursions grows further. The linear solver approach, on the other hand, converges fast for
each linear system, but many systems must be solved.

I. Introduction and co-workers derived the recursive residue generation method
(RRGM)2 In the RRGM, the Lanczos algorithm (see below) is

Correlation functions play an important role in chemical used to reduce recursively the effective dimension of the
physics. They can be used to describe state-to-state, initial state y

selected and cumulative reaction probabilities, photodissociation,prOblem so that, via diagonalization of a small tridiagonal

resonance Raman cross-sections and Golden Rule type expreépatr'x’ the correlation functions can be computed. The RRGM

sions, to mention a fewAssuming a time-independent Hamil- was originally designed for diagonal correlation functions, even

tonianH, we define the correlation function between sta#gs thoygh nondiagonal eIemenFs can be computed using so-called
residue algebraln many applications, we need also to compute

and inlas nondiagonal correlation functions. Recently, MandelsRtam
Con= @n|f(|i|)|¢mg (1) pointed out, using Chebychev polynomials, that the scalar
products between the recursively generated vedidiand the
Here we will concentrate on the time-evolution operalt:to) stateg¢gmlcan be computed on the fly without the explicit need

and the Greens functicﬁa(E) a|thoughf(|i|) can be any (analytic)y  to store all of the recursion vectors. This has the important
function of the Hamiltonian. The two operators are defined as consequence thatl correlation function€nm can be computed
. . from asinglerecursion. Chen and Gfishowed that this can
U(t.ty) = exp[—iH(t — ty)/A] 2 also be implemented for the Lanczos algorithm.
In this paper we will discuss how Krylov subspace methods
and can be used to compute thermal rate constants through correla-
A . Ao tion functions. In Section 2 we review the Lanczos algorithm
G(E) = im[E1 — H + i€] 3) for computing eigenvalues and solving linear systems. In Section
3 the cumulative reaction probability is formulated in terms of
and are related through the (half) Fourier transform a sum over correlation functions using the Greens function (eq
3). Numerical experiments are reported in Section 4, and
G(E) = (ih)* ﬁ;" dt €"0t,0) (4) concluding remarks are given in Section 5.

The standard textbook approach to compute correlation functions!!- The Lanczos Algorithm

is to diagonalize the Hamiltonian matrix (represented in @& |n the Lanczos algorithrh,a new orthogonal basi¥ is
suitable basis or grid discretization) and to express, e.g., thegenerated recursively from a given initial vectoE] leading to
time evolution operator in this eigenbasis a tridiagonal representatioh of the Hamiltonian. By diago-
nalizing the Lanczos matriX = SAS' we can write

e Ht—Ih — \/ gmIA(—to)hy /t (5)
HereA is the eigenvalue andthe eigenvector matrix. Although ~ Cy = [@,[f(H)[¢,[= [, VTV ¢, =
appealing from a theoretical point of view, the method is of no @ |VS(A)STVT|¢ 0(6)
n m

practical use for realistic systems. It is simply not feasible to
compute all eigenvalues and eigenvectors of matrices with

dimensionN > 10° ~ 10* To overcome this limitation, Wyatt In the ideal case, the number of recursibh®r C,,to converge

is much lower than the sizd of the Hamiltonian matrix. The

tPart of the special issue “William H. Miller Festschrift”. procedure can be initialized by any vect¢@l] and the
* E-mail: Hans.Karlsson@kvac.uu.se FAX46-18-471 5830. orthonormal Lanczos vectoi will differ depending on the
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choice of initial state. In scientific computing it is often chosen 2. Find the vectoy that minimizes the residual norfiry||

as a random vector so that it has nonzero projection on all = ||Tuy — ||bl|ei].
eigenstates of the SyStem. The Lanczos algorithm is given by 3. If Converged, compute the solution frog= Vy, else set
the three-term recurrence relation M=M +1andgo to 1.
The minimization is done in a least-squares sense using a
Bryaln + 1= (H — o) InC= GIn — 10 (7) QR factorization. If full orthogonalization is used, this scheme
corresponds to the generalized minimal residual (GMRES)
T,,= o, = mH|nO (8) method!® (GMRES is actually built on the Arnoldi method
' which reduces to the Lanczos method for Hermitean matrices.)
The GMRES is guaranteed to converge in a maximunNof
Tont1 = Torin =B =1l In+ 10] ©) J 9

iterations, and the residual norm decreases monotonically. The

. drawback is that all of the generated Krylov vectors must be

andV = {|00J1L)20).. M} after M recursions. The, can be stored and orthogonalized to all previous vectors. Thus, both
viewed as eigenenergies in a linear chain vfies coupling memory requirements and CPU time per iteration grow linearly
strengths. In the RRGM |¢n(is used to initialize the recursion  ith time. This can be overcome by restarting the method every
which simplifies the expression (eq 6) for the (diagonal) i step, but this can slow convergence considerably. If we

correlation function to choose not to store the Lanczos vectors (with subsequent loss
of orthogonality), we cannot truly minimize the residual norm
VT|¢mD={IZ(D|,IZL|,E2,..} lp L= (1,0,0,.J [Irml], but we can minimize a similar norm that is not so far
from the true residual norm. This is the idea behind the
Com= [, VSIA)SV'[¢, = (STA)S), quasiminimal residual (QMR) methdf. The QMR has a
constant need of memory and CPU time per iteration, which
= Z|31n|2f(An) (10) make it very suitable for large systems. It needs more iterations
n

than the GMRES to converge, but our experiéhce that the

) o total CPU time can be significantly less (because no Gram-
Thus, only the (1,1) element of the correlation function is needed gepmidt orthogonalization is needed).

and only the first row of the eigenvector matrix needs to be
computed For the Greens function (eq 3), one does not even
have to diagonalize the Lanczos matrix because the matrix
element can be computed from a continued fraction expafdion.
In exact mathematics, the Lanczos recursion stops after (maxi-
mum)N iterations, i.e., the size of the original matrix. The outer
eigenstates oH converge first, whereas inner (and closely
spaced) states converge more slowly. If information of the
system can be incorporated in the initial state, the number of
recursions might be considerably fewer than the matrix size.
Examples include slightly perturbed Hamiltoniads= Ho +

V where eigenstates tdy can be used to initialize the recursion.
This is in contrast to the Chebychev polynomiaishose Il Cumulative Reaction Probabilities
recursion scheme depends only on the spectral range of the
underlying Hamiltonian. The drawback of the Lanczos method
is that in numerical implementations there will be a loss of
orthogonality between the generated vectors. This leads to
spurious and multiple copies of eigenstates, and the number of

recursions might be larger than the matrix siké ¥ N). But kT)=Q* f dE e_ﬁEN(E) (11)
the spurious states have zero overlap with the initial state and

can easily be removed, and the residues for the multiple copieswhere Q is the reactant partition function ard(E) can be
add up to the correct valdeThe standard way to monitor computed as the trace

convergence is to diagonalize the Lanczos matrix and compute
Cnm for several different steps in the recursibiihis could be
costly for large systems, and a computable expression for an
upper bound to the correlation function would be of great use.

In the approach described above, we try to find a factorization whereF is a flux operator. A number of different procedures
of the Hamiltonian that aftevl < N steps contains the essential have been developed for computiNgE). Manthe and Millet
information of the system, with respect to the start vector. applied the Lanczos method to the expression inside the trace
Another approach is to use the Lanczos algorithm to solve linearin eq 12 to comput®(E). In each recursion step, the action of
systems of equationdx = b. (For the problems considered here, two d-functions (in a suitable representation) must be computed.
this corresponds tod — H)|¢pm(E)O= |¢m0). In this approach,  This can be done efficiently using Lanczos subspace methods
a distance, the residual = b — Axy, is minimized in each  as QMR®17and GMRES!® Another approach to compute the
step with the solutiox approximated by the vectog, afterM trace is to use the properties of the flux operadidri®-23 1t can
recursions. The algorithm can be described in a compact formpe showdt-*4that in a real finite basis, the flux operator
as follows (g is the unit vector (1,0,0)")

1. PerformM step of the Lanczos algorithm withas start
vector. This givesly = VI,,HVM.

We can thus compute correlation functions using two different
Lanczos-based approaches: a factorization to tridiagonal form
and by solving a set of linear system of equations. The
factorization has the advantage of giving the correlation function
Cnn(E) for all energies at once, but there are no error bounds
and a large number of iterations might be needed. The linear
solver on the other hand can only be solved for a single vector
at a time, but the minimization property leads to a significantly
smaller number of recursions and there are error bounds on the
residual.

Miller, Schwartz, and Tronfbshowed that the thermal rate
constantk(T) can be computed from a Boltzmann average of
the cumulative reaction probability(E)

N(E) = %(Znh)zTr[f:a(E —HFOE-H)] (12

£ =%n[ppa(qa + 8(Gr)Pe] (13)
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has only two nonzero eigenvalueg (s the reaction coordinate
and pr the momentum operator along that coordinate). The
eigenvalues are equal in magnitude but with opposite sign. In
a multidimensional, case the flux operator will not be of low
rank because the two flux eigenstates will be repeated for every
state in the perpendicular degree of freedom. The flux operator
(eq 13) can equivalently be written®as

From this, the matrix elemenis,|¢n(E)Ccan be computed as
Bl IMIGEN ¢, = 5Bl[GE)* — GEN 9,
= S{Bo/ G(E) 19,7~ B/ C(E) ¢,

= B /CEI6 — DICEIS (19)

E = 1T h)] (14)

and finally, the sum leading up tbi(E) as in eq 16. The

whereT is the kinetic energy ant(qo) is the Heaviside step ~ advantage with this approach is that the iterative linear solver
function. The two forms, egs 13 and 14, do not have identical normally converges faster than the Lanczos eigenstate approach.
numerical properties in a basis set representation. The second ne drawback is that we need to compute the matrix elements
form has a rank higher than two, even though the states decreas€XPlicitly for a possibly large number of flux vectofg,Ll In
quickly in magnitude. Miller and Carringtdhcomputed the  @ddition, the procedure has to be repeated for each energy,
eigenstates to the flux operator (eq 13) in a finite basis althoulggigothls can in part be overcome by using a shifted-
representation, and then transformed the eigenstates to the DVR.QMR_' “? From a computational point of_v!ew we n_eed_ to
retaining a rank of 2 for the flux operator. We have used the |dent|fy_the vectorsqant_hat have a nonnegl_lglble contribution
form of eq 14 because it generalizes better to higher dimensions'® the final result and include only those in the sum (eq 16).
and has better numerical properti€s.

Using the flux eigenstates|¢,0= A|¢.Cwe can writeN(E)
in two was®19-13 ejither as a sum of expectation values of the
flux operator

IV. Numerical Experiments

The collinearH + H, exchange reaction, discretized using
pseudospectral methods and smooth exterior sc&lings used
as a test problem. This is an optimal choice because it allows
us to implement the computational methods and test them on a
simple but nontrivial problem. Normal coordinateg,{,) were
used, and the dividing surface was chosen to be locatiq.at
= 0. The flux operator is then given &= I; ® F,!113and the
flux eigenstates can be obtained by diagonalizing a one-
dimensional matrix-,.

For the Lanczos approach (eq 17), we first investigated if a
start vector can be found that minimizes the number of iterations.
Full re-orthogonalization was used to bypass effects due to
numerical round-off effects. A number of different choices of
start vectors were tested with similar results: sum of flux
vectors, random vectors, Gaussian wave packets, and transition
state eigenstates. The reaction probability did not converge
monotonically with the number of iterations, and the number
of recursions needed was approximately equal to the size of
the original matrix. The results for a start vector as a sum of
The o-function can be represented in a time-independent flux vectors are shown in Figure 1. If one regards the method
framework from the Greens function && — H) = —,ImG(E) of eq 17 as a factorization, this indicates that there is no subspace
= —1/,G(E). Using this representation, the Lanczos method can of H that contributes significantly more to the final result than
be used to computs(E) either from an expansion in a Lanczos any other. The gain, which should not be underestimated, is
basis (eq 6) or from solving the linear system of equations that we have generated a tridiagonal matrix that it is possible

l¢m(E) 0= Gi(E)|¢nl] Combining eqs 16 and 6 we can compute 10 diagonalize. If we do not explicitly orthogonalize the Lanczos
N(E) from vectors, there will be a loss of orthogonality already after30

50 iterations. Multiple copies of extreme eigenstates will show
up as well as spurious states. This has the effect that the

1 o R
N(E) = (27h)°D 24(@1/0(E — HIFOE — H)igyT (1)
1 .
= —(27h)* 1, @,(E)|F|¢,(E)T
(@) Z B(B)IFIn(E)
or as a sum of (energy) correlation functions

P _h
N(E) = (2h) Z;mea(E H) g 0F  (16)

1.
= 2(2nh) Z;Mmmsnwm(amz

N(E) = 2b°5 S Adnl @ VIE — AT 'SVg,[F  (17)

After the Lanczos matrix has been diagonalizi(E) is given

for all energies at once. Computationally, there are several issue
to consider. First, how many iterations do we need to get a

converged result? Can we find a start ved@irthat improves

convergence df(E) slows down considerably ard > N will

be needed. This is somewhat worrisome because this is the
approach that must be used for large systems. This could imply
that the Lanczos scheme, in this formulation, is not optimal.

SThese findings call for further investigations and comparison

with, e.g., Chebychev polynomials.
For the Greens function approach (eq 16), two questions have

i i ions? ; X
the convergence rate with respect to the number of iterations? to be considered: how many flux vectors do we need to include

How many more iteration® > N do we need? A problem is
to find a nonexpensive way to check for convergence.

Another approach is to compulgr(E)from which (eq 16)

in the sum (eq 16) and which convergence tolerance is needed
for the iterative solver. Here the QMR metHéd’ with a
diagonal preconditioner was used. In Figure 2 we display the

can be computed. Using the linear solver approach it is importanterror of N(E) as a function of the error tolerance Xdn the

to remember that, in generdim[G(E)]|lyv 0= IM[G(E)|y .
Instead, the fornim[G(E)] = '/J[G(E)* — G(E)] should be used.

QMR. As is seen, the error iN(E) decays linearly with the
error tolerance for the QMR. A second question is how many
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Figure 1. Convergence oR(E) as a function of Lanczos recursions. The relative error dtéanczos iterations is given ali(E) — N(E))/N(E).
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Figure 2. Convergence oN(E) as a function of the tolerance 10 Figure 3. Convergence ofN(E) with respect to the number of

used for the linear solver, the quasiminimal residual method (QMR). eigenstates to the 1-dimensional flux operator.

flux eigenstates are needed to reach convergence. First W&, piscussion

consider the number of states in the perpendicular degree of

freedom. The flux vectors were selected according to a cutoff To compute correlation functions for realistic systems, one
criteria. Only states with/(q;,0 = 0) < V., whereV(g:,0p) is must be able to handle functions of large Hamiltonian matrices.
the potential energy surface, were included. This has the effectin this paper we have investigated the use of Krylov subspace
of locating the flux states in the transition state region. ¥or methods, especially the Lanczos algorithm, to reduce the
= 2 eV, the error was on the order of 2%, fdg = 1.5 eV it effective problem size. An important reduction of the compu-
increased to 4%, whereas fot = 1.0 eV it was over 10%. tational effort was the finding by Mandelshté@nd Chen and
The flux operator used here (eq 14) has a low rank with Gud* that all correlation functions can be computed from a single
eigenvalues decaying (nearly) exponentially. In Figure 3 we recursion, a result that was used here to compute cumulative
show the convergence diE) when the number of eigenstates reaction probabilities. We found that the number of Lanczos
(to the 1-dimensional flux operator) included in the sum is iterations needed for convergence was on the order of the
varied. It is clear that we need to include at least six flux original matrix, although producing a tridiagonal matrix that
eigenstates in the sum. For a system with a high density of statescan be diagonalized. If Lanczos recursions are used without
in the perpendicular degree of freedom, this might still lead to explicit re-orthogonalization, the generated vectors quickly lost
a large number of flux eigenstates, increasing the computationalorthogonality and a large number of recursions were needed.
cost. We also noted tha¥l(E) could be computed by solving a number
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of linear systemsign(E)J= IMG(E)|¢) The linear solver |4 (T + At)T= e M2 1= vSe MgV ()0 (24)
converged faster than the Lanczos method discussed above, due " m T "
to the m|n|m|zat|0n property However' a |arge number of The d|ﬁerence from the Short iterative Lanczos (SIL) meﬂ%od

systems must be solved for each energy leading to a much highef$ that an arbitrary initial state can be used here to propagate
computational cost. all |¢nCat once The choice of start vector will affect the number

It should be noted that the methods put forward here also Of Lanczos iterations and thus the maximum time i¢phat
can be used for time-dependent problems. The thermal rateCan be taken. These ideas will be investigated in a forthcoming
constant can be expressed as a time integral of the flux-flux Paper.

autocorrelation functich )
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