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Thermal rate constantsk(T) and cumulative reaction probabilitiesN(E) can be computed as a sum of correlation
functionsCnm ) 〈φn|f(Ĥ)|φm〉. In this paper we discuss the use of two different Krylov subspace methods to
compute these correlation functions for large systems. The first approach is based on the Lanczos algorithm
to transform the Hamiltonian to tridiagonal form. As shown by Mandelshtam (J. Chem. Phys.1998, 108,
9999) and Chen and Guo (J. Chem. Phys.1999, 111, 9944), all correlation functions can be computed from
a single recursion. The second approach treats a number of linear systems of equations using a Krylov subspace
solver. Here the quasiminimal residual (QMR) method was used. For the first approach, we found that we
needed the same number of Lanczos recursions as the size of the matrix. If no re-orthogonalization is used,
the number of recursions grows further. The linear solver approach, on the other hand, converges fast for
each linear system, but many systems must be solved.

I. Introduction

Correlation functions play an important role in chemical
physics. They can be used to describe state-to-state, initial state
selected and cumulative reaction probabilities, photodissociation,
resonance Raman cross-sections and Golden Rule type expres-
sions, to mention a few.1 Assuming a time-independent Hamil-
tonianĤ, we define the correlation function between states|φn〉
and |φm〉 as

Here we will concentrate on the time-evolution operatorÛ(t,t0)
and the Greens functionĜ(E) althoughf(Ĥ) can be any (analytic)
function of the Hamiltonian. The two operators are defined as

and

and are related through the (half) Fourier transform1

The standard textbook approach to compute correlation functions
is to diagonalize the Hamiltonian matrix (represented in a
suitable basis or grid discretization) and to express, e.g., the
time evolution operator in this eigenbasis

HereΛ is the eigenvalue andV the eigenvector matrix. Although
appealing from a theoretical point of view, the method is of no
practical use for realistic systems. It is simply not feasible to
compute all eigenvalues and eigenvectors of matrices with
dimensionN > 103 ∼ 104. To overcome this limitation, Wyatt

and co-workers derived the recursive residue generation method
(RRGM).2 In the RRGM, the Lanczos algorithm (see below) is
used to reduce recursively the effective dimension of the
problem so that, via diagonalization of a small tridiagonal
matrix, the correlation functions can be computed. The RRGM
was originally designed for diagonal correlation functions, even
though nondiagonal elements can be computed using so-called
residue algebra.2 In many applications, we need also to compute
nondiagonal correlation functions. Recently, Mandelshtam3

pointed out, using Chebychev polynomials, that the scalar
products between the recursively generated vectors|n〉 and the
states|φm〉 can be computed on the fly without the explicit need
to store all of the recursion vectors. This has the important
consequence thatall correlation functionsCnm can be computed
from a single recursion. Chen and Guo4 showed that this can
also be implemented for the Lanczos algorithm.

In this paper we will discuss how Krylov subspace methods
can be used to compute thermal rate constants through correla-
tion functions. In Section 2 we review the Lanczos algorithm
for computing eigenvalues and solving linear systems. In Section
3 the cumulative reaction probability is formulated in terms of
a sum over correlation functions using the Greens function (eq
3). Numerical experiments are reported in Section 4, and
concluding remarks are given in Section 5.

II. The Lanczos Algorithm

In the Lanczos algorithm,5 a new orthogonal basisV is
generated recursively from a given initial vector|0〉, leading to
a tridiagonal representationT of the Hamiltonian. By diago-
nalizing the Lanczos matrixT ) SΛS† we can write

In the ideal case, the number of recursionsM for Cnm to converge
is much lower than the sizeN of the Hamiltonian matrix. The
procedure can be initialized by any vector|0〉, and the
orthonormal Lanczos vectorsV will differ depending on the
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Cnm ) 〈φn|f(Ĥ)|φm〉 (1)

Û(t,t0) ) exp[-iĤ(t - t0)/p] (2)

Ĝ(E) ) lim
εf0

[E1̂ - Ĥ + iε]-1 (3)

Ĝ(E) ) (ip)-1 ∫0

∞
dt eiEt/pÛ(t,0) (4)

e-iH(t-t0)/p ) V e-iΛ(t-t0)/pV† (5)

Cnm ) 〈φn|f(H)|φm〉 ) 〈φn|Vf(T)V†|φm〉 )

〈φn|VSf(Λ)S†V†|φm〉 (6)
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choice of initial state. In scientific computing it is often chosen
as a random vector so that it has nonzero projection on all
eigenstates of the system. The Lanczos algorithm is given by
the three-term recurrence relation

andV ) {|0〉,|1〉,|2〉,...|M〉} after M recursions. TheRn can be
viewed as eigenenergies in a linear chain withân as coupling
strengths. In the RRGM2, |φm〉 is used to initialize the recursion
which simplifies the expression (eq 6) for the (diagonal)
correlation function to

Thus, only the (1,1) element of the correlation function is needed
and only the first row of the eigenvector matrix needs to be
computed.2 For the Greens function (eq 3), one does not even
have to diagonalize the Lanczos matrix because the matrix
element can be computed from a continued fraction expansion.6,7

In exact mathematics, the Lanczos recursion stops after (maxi-
mum)N iterations, i.e., the size of the original matrix. The outer
eigenstates ofH converge first, whereas inner (and closely
spaced) states converge more slowly. If information of the
system can be incorporated in the initial state, the number of
recursions might be considerably fewer than the matrix size.
Examples include slightly perturbed HamiltoniansH ) H0 +
V where eigenstates toH0 can be used to initialize the recursion.7

This is in contrast to the Chebychev polynomials3 whose
recursion scheme depends only on the spectral range of the
underlying Hamiltonian. The drawback of the Lanczos method
is that in numerical implementations there will be a loss of
orthogonality between the generated vectors. This leads to
spurious and multiple copies of eigenstates, and the number of
recursions might be larger than the matrix size (M > N). But
the spurious states have zero overlap with the initial state and
can easily be removed, and the residues for the multiple copies
add up to the correct value.2 The standard way to monitor
convergence is to diagonalize the Lanczos matrix and compute
Cnm for several different steps in the recursion.4 This could be
costly for large systems, and a computable expression for an
upper bound to the correlation function would be of great use.

In the approach described above, we try to find a factorization
of the Hamiltonian that afterM , N steps contains the essential
information of the system, with respect to the start vector.
Another approach is to use the Lanczos algorithm to solve linear
systems of equationsAx) b. (For the problems considered here,
this corresponds to (E - H)|φm(E)〉 ) |φm〉). In this approach,
a distance, the residualrM ) b - AxM, is minimized in each
step with the solutionx approximated by the vectorxM afterM
recursions. The algorithm can be described in a compact form
as follows (e1 is the unit vector (1,0,0...)T)

1. PerformM step of the Lanczos algorithm withb as start
vector. This givesTM ) VM

† HVM.

2. Find the vectory that minimizes the residual norm||rM||
) ||TMy - ||b||e1||.

3. If converged, compute the solution fromxn ) Vy, else set
M ) M + 1 and go to 1.

The minimization is done in a least-squares sense using a
QR factorization. If full orthogonalization is used, this scheme
corresponds to the generalized minimal residual (GMRES)
method.18 (GMRES is actually built on the Arnoldi method
which reduces to the Lanczos method for Hermitean matrices.)
The GMRES is guaranteed to converge in a maximum ofN
iterations, and the residual norm decreases monotonically. The
drawback is that all of the generated Krylov vectors must be
stored and orthogonalized to all previous vectors. Thus, both
memory requirements and CPU time per iteration grow linearly
with time. This can be overcome by restarting the method every
Mth step, but this can slow convergence considerably. If we
choose not to store the Lanczos vectors (with subsequent loss
of orthogonality), we cannot truly minimize the residual norm
||rM||, but we can minimize a similar norm that is not so far
from the true residual norm. This is the idea behind the
quasiminimal residual (QMR) method.16 The QMR has a
constant need of memory and CPU time per iteration, which
make it very suitable for large systems. It needs more iterations
than the GMRES to converge, but our experience17 is that the
total CPU time can be significantly less (because no Gram-
Schmidt orthogonalization is needed).

We can thus compute correlation functions using two different
Lanczos-based approaches: a factorization to tridiagonal form
and by solving a set of linear system of equations. The
factorization has the advantage of giving the correlation function
Cnm(E) for all energies at once, but there are no error bounds
and a large number of iterations might be needed. The linear
solver on the other hand can only be solved for a single vector
at a time, but the minimization property leads to a significantly
smaller number of recursions and there are error bounds on the
residual.

III. Cumulative Reaction Probabilities

Miller, Schwartz, and Tromp8 showed that the thermal rate
constantk(T) can be computed from a Boltzmann average of
the cumulative reaction probabilityN(E)

where Q is the reactant partition function andN(E) can be
computed as the trace

whereF̂ is a flux operator. A number of different procedures
have been developed for computingN(E). Manthe and Miller9

applied the Lanczos method to the expression inside the trace
in eq 12 to computeN(E). In each recursion step, the action of
two δ-functions (in a suitable representation) must be computed.
This can be done efficiently using Lanczos subspace methods
as QMR16,17 and GMRES.18 Another approach to compute the
trace is to use the properties of the flux operatorF̂.1,10-13 It can
be shown11,14 that in a real finite basis, the flux operator

ân+1|n + 1〉 ) (H - Rn)|n〉 - ân|n - 1〉 (7)

Tn,n ) Rn ) 〈n|H|n〉 (8)

Tn,n+1 ) Tn+1,n ) ân ) || |n + 1〉 || (9)

V†|φm〉 ) {〈0|,〈1|,〈2,...}|φm〉 ) (1,0,0,...)T

Cmm) 〈φm|VSf(Λ)S†V†|φm〉 ) (Sf(Λ)S†)1,1

) ∑
n

|S1n|2f(Λn) (10)

k(T) ) Q-1 ∫ dE e-âEN(E) (11)

N(E) ) 1
2
(2πp)2Tr[F̂δ(E - Ĥ)F̂δ(E - Ĥ)] (12)

F̂ ) 1
2m

[p̂Fδ(qF) + δ(qF)p̂F] (13)
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has only two nonzero eigenvalues (qF is the reaction coordinate
and p̂F the momentum operator along that coordinate). The
eigenvalues are equal in magnitude but with opposite sign. In
a multidimensional, case the flux operator will not be of low
rank because the two flux eigenstates will be repeated for every
state in the perpendicular degree of freedom. The flux operator
(eq 13) can equivalently be written as8

whereT̂ is the kinetic energy andh(q0) is the Heaviside step
function. The two forms, eqs 13 and 14, do not have identical
numerical properties in a basis set representation. The second
form has a rank higher than two, even though the states decrease
quickly in magnitude. Miller and Carrington13 computed the
eigenstates to the flux operator (eq 13) in a finite basis
representation, and then transformed the eigenstates to the DVR,
retaining a rank of 2 for the flux operator. We have used the
form of eq 14 because it generalizes better to higher dimensions
and has better numerical properties.15

Using the flux eigenstatesF̂|φn〉 ) λn|φn〉 we can writeN(E)
in two was:1,10-13 either as a sum of expectation values of the
flux operator

or as a sum of (energy) correlation functions

The δ-function can be represented in a time-independent
framework from the Greens function asδ(E - Ĥ) ) -1/πImĜ(E)
) -1/πĜi(E). Using this representation, the Lanczos method can
be used to computeN(E) either from an expansion in a Lanczos
basis (eq 6) or from solving the linear system of equations
|φm(E)〉 ) Ĝi(E)|φn〉. Combining eqs 16 and 6 we can compute
N(E) from

After the Lanczos matrix has been diagonalized,N(E) is given
for all energies at once. Computationally, there are several issues
to consider. First, how many iterations do we need to get a
converged result? Can we find a start vector|0〉 that improves
the convergence rate with respect to the number of iterations?
How many more iterationsM > N do we need? A problem is
to find a nonexpensive way to check for convergence.

Another approach is to compute|φm(E)〉 from which (eq 16)
can be computed. Using the linear solver approach it is important
to remember that, in general,Im[G(E)]|ψ〉 * Im[G(E)|ψ〉].
Instead, the formIm[G(E)] ) i/2[G(E)* - G(E)] should be used.

From this, the matrix elements〈φn|φm(E)〉 can be computed as

and finally, the sum leading up toN(E) as in eq 16. The
advantage with this approach is that the iterative linear solver
normally converges faster than the Lanczos eigenstate approach.
The drawback is that we need to compute the matrix elements
explicitly for a possibly large number of flux vectors|φn〉. In
addition, the procedure has to be repeated for each energy,
although this can in part be overcome by using a shifted-
QMR.19,20 From a computational point of view we need to
identify the vectors|φn〉 that have a nonnegligible contribution
to the final result and include only those in the sum (eq 16).

IV. Numerical Experiments

The collinearH + H2 exchange reaction, discretized using
pseudospectral methods and smooth exterior scaling,21 was used
as a test problem. This is an optimal choice because it allows
us to implement the computational methods and test them on a
simple but nontrivial problem. Normal coordinates (q1,q2) were
used, and the dividing surface was chosen to be located atf(q2)
) 0. The flux operator is then given asF ) I1 X F2

11,13and the
flux eigenstates can be obtained by diagonalizing a one-
dimensional matrixF2.

For the Lanczos approach (eq 17), we first investigated if a
start vector can be found that minimizes the number of iterations.
Full re-orthogonalization was used to bypass effects due to
numerical round-off effects. A number of different choices of
start vectors were tested with similar results: sum of flux
vectors, random vectors, Gaussian wave packets, and transition
state eigenstates. The reaction probability did not converge
monotonically with the number of iterations, and the number
of recursions needed was approximately equal to the size of
the original matrix. The results for a start vector as a sum of
flux vectors are shown in Figure 1. If one regards the method
of eq 17 as a factorization, this indicates that there is no subspace
of H that contributes significantly more to the final result than
any other. The gain, which should not be underestimated, is
that we have generated a tridiagonal matrix that it is possible
to diagonalize. If we do not explicitly orthogonalize the Lanczos
vectors, there will be a loss of orthogonality already after 30-
50 iterations. Multiple copies of extreme eigenstates will show
up as well as spurious states. This has the effect that the
convergence ofN(E) slows down considerably andM . N will
be needed. This is somewhat worrisome because this is the
approach that must be used for large systems. This could imply
that the Lanczos scheme, in this formulation, is not optimal.
These findings call for further investigations and comparison
with, e.g., Chebychev polynomials.

For the Greens function approach (eq 16), two questions have
to be considered: how many flux vectors do we need to include
in the sum (eq 16) and which convergence tolerance is needed
for the iterative solver. Here the QMR method16,17 with a
diagonal preconditioner was used. In Figure 2 we display the
error of N(E) as a function of the error tolerance 10-ε in the
QMR. As is seen, the error inN(E) decays linearly with the
error tolerance for the QMR. A second question is how many

F̂ ) i
p
[T̂,h(q0)] (14)

N(E) )
1

2
(2πp)2∑

n

λn〈φn|δ(E - Ĥ)F̂δ(E - Ĥ)|φn〉 (15)

)
1

2
(2πp)2∑

n

λn〈φn(E)|F̂|φn(E)〉

N(E) )
1

2
(2πp)2∑

n
∑
m

λnλm|〈φn|δ(E - Ĥ)|φm〉|2 (16)

)
1

2
(2πp)2∑

n
∑
m

λnλm|〈φn|φm(E)〉|2

N(E) ) 2p2∑
n
∑
m

λnλm|〈φn|VS[E - Λ]-1S†V†|φm〉|2 (17)

〈φm|Im[G(E)]|φn〉 ) i
2

〈φm|[G(E)* - G(E)]|φn〉

) i
2
[〈φm|G(E)* |φn〉 - 〈φm|G(E)|φn〉]

) i
2
[〈φn|G(E)|φm〉* - 〈φm|G(E)|φn〉] (18)
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flux eigenstates are needed to reach convergence. First we
consider the number of states in the perpendicular degree of
freedom. The flux vectors were selected according to a cutoff
criteria. Only states withV(q1,q2 ) 0) e Vc, whereV(q1,q2) is
the potential energy surface, were included. This has the effect
of locating the flux states in the transition state region. ForVc

) 2 eV, the error was on the order of 2%, forVc ) 1.5 eV it
increased to 4%, whereas forVc ) 1.0 eV it was over 10%.
The flux operator used here (eq 14) has a low rank with
eigenvalues decaying (nearly) exponentially. In Figure 3 we
show the convergence ofN(E) when the number of eigenstates
(to the 1-dimensional flux operator) included in the sum is
varied. It is clear that we need to include at least six flux
eigenstates in the sum. For a system with a high density of states
in the perpendicular degree of freedom, this might still lead to
a large number of flux eigenstates, increasing the computational
cost.

V. Discussion

To compute correlation functions for realistic systems, one
must be able to handle functions of large Hamiltonian matrices.
In this paper we have investigated the use of Krylov subspace
methods, especially the Lanczos algorithm, to reduce the
effective problem size. An important reduction of the compu-
tational effort was the finding by Mandelshtam3 and Chen and
Guo4 that all correlation functions can be computed from a single
recursion, a result that was used here to compute cumulative
reaction probabilities. We found that the number of Lanczos
iterations needed for convergence was on the order of the
original matrix, although producing a tridiagonal matrix that
can be diagonalized. If Lanczos recursions are used without
explicit re-orthogonalization, the generated vectors quickly lost
orthogonality and a large number of recursions were needed.
We also noted thatN(E) could be computed by solving a number

Figure 1. Convergence ofN(E) as a function of Lanczos recursions. The relative error afterM Lanczos iterations is given as (NM(E) - N(E))/N(E).

Figure 2. Convergence ofN(E) as a function of the tolerance 10-ε

used for the linear solver, the quasiminimal residual method (QMR).
Figure 3. Convergence ofN(E) with respect to the number of
eigenstates to the 1-dimensional flux operator.
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of linear systems|φn(E)〉 ) ImG(E)|φn〉. The linear solver
converged faster than the Lanczos method discussed above, due
to the minimization property. However, a large number of
systems must be solved for each energy leading to a much higher
computational cost.

It should be noted that the methods put forward here also
can be used for time-dependent problems. The thermal rate
constant can be expressed as a time integral of the flux-flux
autocorrelation function8

whereQ is the reactant partition function. Wyatt,22 within the
RRGM formalism, did one of the first attempts to apply the
Lanczos method to this problem. Withtc ) t - iâ and â )
1/kT, the flux eigenstates formulation gives1,10-12

Using a recursively generated basis as above we can write

with advantages and disadvantages similar to eq 17. The
correlation function can also be computed from a short time
propagator

where the time stepping is given by

The difference from the short iterative Lanczos (SIL) method23

is that an arbitrary initial state can be used here to propagate
all |φn〉 at once. The choice of start vector will affect the number
of Lanczos iterations and thus the maximum time step∆t that
can be taken. These ideas will be investigated in a forthcoming
paper.
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C(t) ) ∑
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m
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